

Interpretation of Water Isotherm Hysteresis for an Activated Charcoal Using Stochastic Pore Networks

R. MANN AND H.N.S. YOUSEF

Department of Chemical Engineering, UMIST, Manchester M60 1QD, England

D.K. FRIDAY

Geo-Centres Inc, Fort Washington, Maryland, U.S.A.

J.J. MAHLE

U.S. Army, CRDEC, Aberdeen Proving Ground, MD 21010, U.S.A.

Abstract. Water vapor adsorption equilibria on activated carbons typically exhibit hysteresis. The size and shape of the hysteresis loop which separates the adsorption and desorption branches is a strong function of the pore size and interconnectivity of the pores. Neither conventional pore filling models nor statistical thermodynamics approaches provide a means for predicting the extent of hysteresis from only adsorption measurements. This work uses the Kelvin Equation in conjunction with the structural concept of a stochastic pore network to describe measured water isotherms on BPL carbon. Using a pore segment distribution function determined from the adsorption branch, it is shown that totally random assemblies underestimate the extent of hysteresis. It is possible, however, to closely fit the measured BPL-water hysteresis loop using a patchy heterogeneity in which a proportion of the larger pores are preferentially located on the exterior, mid-range pores are concentrated in a sub-surface layer and some large pores form shielded voids behind much smaller pores.

Keywords: water isotherms, isotherm hysteresis, activated charcoal, pore size distribution, pore networks

Introduction

Activated carbon is used in countless industrial hygiene and air purification applications. Typically, activated carbon shows a broad range of pore sizes over several orders of magnitude. It is important to understand the nature of water adsorption, since in air with non-zero relative humidity, the presence of water inevitably interferes with the concurrent take-up of any toxic or contaminant compounds in the air.

For adsorbents like activated carbon, it is widely recognised that the extent of sorbate take-up is some combination of surface adsorption and capillary condensation. For water adsorption from humid air, experiments show a pronounced hysteresis between the adsorption and desorption branches of the isotherm (Mahle and Friday, 1989). The hysteresis is suspected to be structurally linked. So far, however, there is no convincing explanation of how the pore space geometry, interior spatial topology and surface texture of an activated carbon can be quantitatively related to adsorption isotherm hysteresis. Grossly simplistic concepts such as the ink bottle explanation (Everett,

1967), are self-evidently inadequate in representing the seemingly intractable complexities of a porous carbon adsorbent simultaneously exhibiting micro-, meso- and macroporosity. Russel and Le Van (1994) have recently presented a summary of traditional pore size distribution characterisation methods, although none of the models reviewed addressed network structures that provide a basis for hysteresis.

The concept of random or stochastic networks of simple pores has been available for some time, following the pioneering work by Fatt (1956). Applications to adsorption using 3-D networks was significantly advanced by Nicholson and Petropoulos (1968). More recently, the crucial impact of pore size distribution on adsorption isotherm hysteresis has been demonstrated by Mann and Thomson (1989), following on earlier work by Mason (1982) and Seaton (1991), showing that pore connectivity and associated percolation theory concepts could influence isotherm hysteresis. Also more recently, Petropoulos et al. (1989) have shown how under partially filled conditions a stochastic network exhibits complex interactions of uptake and permeability. More generally, simple stochastic

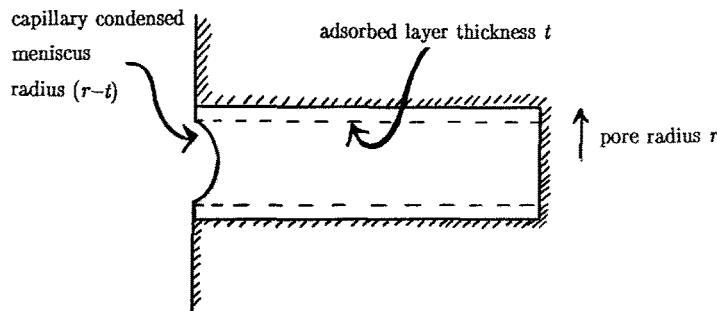


Fig. 1. Simple single pore model.

pore networks have been shown to be capable of explaining a wide variety of phenomena in porous materials, including hysteresis in mercury porosimetry (Androutsopoulos and Mann, 1979; Mann and Golshan, 1981) low recovery in water flood oil displacement (Mann, Androutsopoulos, and Golshan, 1981), catalyst tortuosity under reaction and non-reaction conditions (Sharratt and Mann, 1987), catalyst deactivation by coke laydown (Mann, Sharratt, and Thomson, 1986; Arbabi and Sahimi, 1991) and effective diffusivity in Wicke-Kallenbach experiments (Patwardhan and Mann, 1991).

Stochastic pore networks have been devised as a computationally tractable quantitative treatment of the random interconnected pore spaces encountered in typical porous materials. The latest work on adsorption has included the impact of variation of pore connectivity on isotherm hysteresis (Liu and Seaton, 1994). Rajniak and Yang (1993) have also lately demonstrated how secondary isotherm behavior can be predicted given that the primary adsorption and desorption isotherms are available. In this work, we demonstrate procedures for matching exactly both the adsorption and desorption branches for a specific experimental result for a BPL carbon. It is shown that relatively small structural variations from perfectly random allocation of pores into a network can produce significant variation in the degree of hysteresis observed. Pictorialisations of the deduced networks, albeit only in 2-D and of restricted size amounting to assemblies of pores of the order of thousands, show how the 'texture' of the pore spaces can be visually presented. It is intended ultimately that stochastic pore networks configured by fractal geometry should provide an SEM image reconstruction basis for pore structure evaluation (Mann and Wasilewski, 1990), thereby dispensing with the perpetual necessity to undertake difficult laboratory proce-

dures which in themselves can only provide an indirect measure of the detailed morphology of typically highly complex pore spaces.

Filling and Emptying of a Single Pore

The process of capillary condensation for an 'idealised' cylindrical pore is shown in Fig. 1. The amount of gas adsorbed in such an idealised geometry can be readily calculated from an understanding of the thickness of the adsorbed layer and the Kelvin Equation. The pressure p at which such a pore will fill with condensed gas is given by:

$$r - t = \frac{-2\sigma V_L \cos \theta}{RT \ln \left(\frac{p}{p_{\text{sat}}} \right)} \quad (1)$$

In these circumstances as the pressure of the adsorbing gas is raised from zero to p_{sat} and returned back to zero, there will be a small hysteresis between the adsorption and desorption branches of the isotherm caused by the fact that the pore will empty at a lower pressure since the thickness of the adsorbed layer does not affect the meniscus curvature at the pore emptying pressure (Mann and Thomson, 1989). In the event that the thickness t of the adsorbed layer is small relative to the pore radius, any hysteresis between adsorption and desorption will be vanishingly small. For porous materials which show a large hysteresis effect, other mechanisms must be sought to explain the widely different paths exhibited by the adsorption and desorption branches of the isotherm. In this work, for simplicity, any corrections for physical properties in the Kelvin equation, as proposed by Machin and Stuckless (1985), will be left out of the analysis. More complete descriptions of the adsorbed

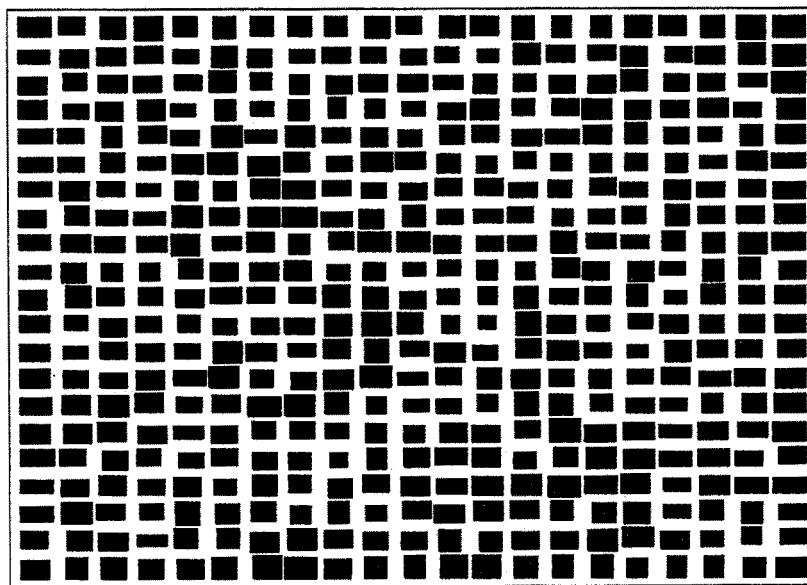


Fig. 2. Pictorialised 20×20 network for uniform distribution of pore sizes.

equation of state and the meniscus behavior are as yet unresolved.

Fitting a Network to an Adsorption Isotherm

It is conceptually straight forward to construct networks of any size and to configure them with any stipulated distribution of pore segments. Figure 2 shows a pictorialised example of a 20×20 network which comprises uniformly distributed pores between 10 and 4400 Å with a node spacing of 20,000 Å. In Fig. 2, the pores which comprise a uniform distribution have been placed randomly within the network. This means that the size of a given pore is statistically independent of the size of its neighbouring pores. This is termed a stochastic pore network.

The second problem in developing applications of stochastic pore networks is to deduce the statistical distribution of pore segment sizes from a given characterisation method. In this respect, Fig. 3 shows the experimental adsorption/desorption isotherms for a sample of BPL carbon. Fortunately, it is always possible to directly deduce the pore segment distribution for the process of adsorption, since there are no accessibility limitations during capillary filling by condensation. All pores, irrespective of their radius or position in a network, will fill at a relative pressure dictated by the Kelvin Equation (Eq. (1)).

A stochastic network is then constructed from the adsorption branch in Fig. 3 by dividing the cumulative volume ordinate into (say) 10 equal volume increments. The first volume increment from 0 to 0.1 must comprise pores between zero and 156 Å in diameter, since the relative pressure abscissa of 0.48 corresponds to the upper limit of pore size in the incremental volume range. Pore segments are then assumed to be uniformly distributed in this range. The second volume increment (between 0.1 and 0.2) then extends to a relative pressure of 0.54 which must correspond to pores with radii between 156 Å and 185 Å. This argument is applied to each volume increment in turn up to a cumulative volume of 1.0 which obviously corresponds to a complete filling of the network.

The result of this procedure is to provide relative numbers of pores obeying a uniform distribution in each of the ten pore radii ranges. The actual number of pores to be allocated in each of these size ranges is then determined by the size of network to be constructed. The overall numbers of pores have to be coincident with the $2N(N + 1)$ pores that form an $N \times N$ stochastic network of pores.

Networks of size 20×20 form convenient visualisations in 2-D on a PC screen, thereby enabling an image based assessment of the character of the stochastic network. The 20×20 network has 840 pores in total. The fitting to the experimental water isotherm in Fig. 3 by the above procedures gives the result depicted in

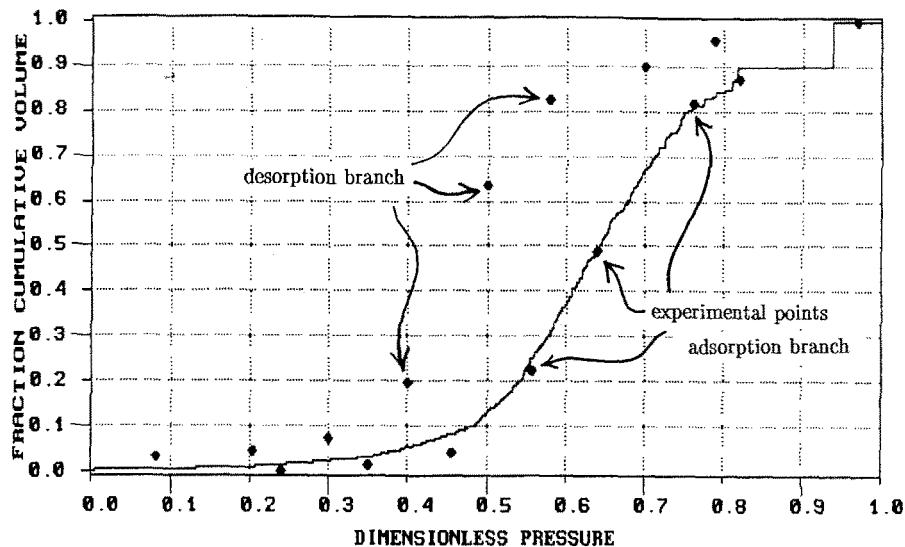


Fig. 3. Experimental adsorption isotherm fitted by a random 20×20 network.

224	268	112	383	167	70	113	69	40	160	188	68	198	81	276	78	317	217	167	189	
332	125	52	202	235	542	175	233	119	115	101	337	275	228	190	65	198	211	193	158	222
170	34	197	90	158	151	12	46	18	44	99	212	58	254	130	242	232	120	294	308	
211	21	25	188	291	164	217	265	14	180	325	21	114	77	267	383	93	83	176	226	252
83	64	120	374	24	34	55	15	65	94	72	36	72	205	351	101	124	305	75	243	
173	212	177	305	214	33	4	190	170	238	221	160	59	203	89	32	270	217	262	7	209
15	154	264	213	77	139	161	107	165	62	176	94	78	71	198	272	79	235	445	166	
391	115	103	180	260	107	93	383	77	104	74	62	177	122	165	174	78	184	131	251	123
147	177	8	157	212	9	187	232	225	191	12	142	206	144	104	75	237	125	214	73	
227	204	287	144	21	191	200	183	290	287	22	113	39	219	242	140	184	46	118	118	114
283	21	52	413	10	194	162	113	161	168	183	314	212	46	2	174	81	133	44	111	
187	127	560	107	93	228	64	118	272	172	37	34	272	188	158	28	36	54	50	126	108
192	84	178	189	39	184	225	238	22	187	62	12	148	304	135	113	186	148	46	50	
93	113	201	337	123	113	143	36	297	85	175	46	159	31	217	250	313	541	163	116	82
268	311	26	281	237	162	169	159	300	24	235	234	261	210	153	16	85	171	13	195	
267	239	247	304	59	188	97	255	158	47	192	69	106	251	195	564	226	150	101	62	9
218	237	123	48	313	85	173	250	479	228	195	16	190	13	118	151	184	211	10	245	
13	28	514	300	266	232	11	55	298	7	183	208	166	74	77	8	305	251	201	20	107
291	16	138	81	187	201	37	377	331	266	2	1795	213	88	210	181	205	203	175	17	
201	158	175	205	23	189	190	214	172	341	23	33	142	43	231	32	183	155	327	32	196
200	77	31	179	223	146	179	27	218	380	209	237	104	125	214	227	263	22	192	230	
327	204	78	10	160	195	274	187	210	66	36	171	202	134	165	37	93	166	184	9	52
178	325	50	69	191	52	327	225	193	275	241	79	96	153	94	91	188	192	154	171	
158	284	339	278	114	241	192	285	116	224	203	189	222	146	174	175	218	556	123	24	72
98	196	18	139	89	56	234	103	53	267	274	30	123	125	151	74	150	21	10	8	
192	214	199	68	50	161	10	52	258	90	280	163	383	268	105	46	161	79	100	38	138
241	29	26	50	163	49	65	137	151	255	9	227	82	165	186	195	232	59	71	183	
81	126	165	267	209	46	29	39	20	85	130	136	203	169	86	228	46	132	33	390	146
350	56	193	7	297	209	89	163	187	85	170	139	178	311	350	32	139	182	136	130	
208	130	119	220	260	141	3	45	169	218	130	165	189	163	214	177	110	37	244	321	50
139	196	17	112	165	82	195	137	314	120	184	31	176	126	258	153	186	444	360	221	
128	181	192	323	249	174	223	237	141	291	155	192	39	100	158	340	93	215	109	400	7
213	363	257	51	41	136	306	41	212	247	2	69	152	67	252	159	6	440	87	26	
18	40	180	188	295	380	124	180	82	164	50	61	263	2	240	75	147	59	206	71	231
187	205	208	215	101	259	33	105	129	181	238	25	155	145	237	59	209	14	24	115	
172	148	196	104	18	211	180	124	46	186	93	92	255	470	21	121	258	66	159	181	98
37	187	147	36	199	242	112	251	115	225	134	208	351	353	388	180	27	287	5	136	
295	159	54	111	130	79	179	197	211	254	214	128	203	230	165	231	173	243	9	122	84
228	159	170	83	85	150	236	132	44	153	190	112	90	114	125	159	182	121	92	238	
223	126	3	104	351	134	3	227	28	199	157	206	123	122	114	190	84	206	95	127	254
161	139	18	330	179	170	58	295	173	16	87	28	216	214	146	132	110	51	160	19	

Fig. 4. Numerical values of 840 pores in fitted random network (20 \times 20).

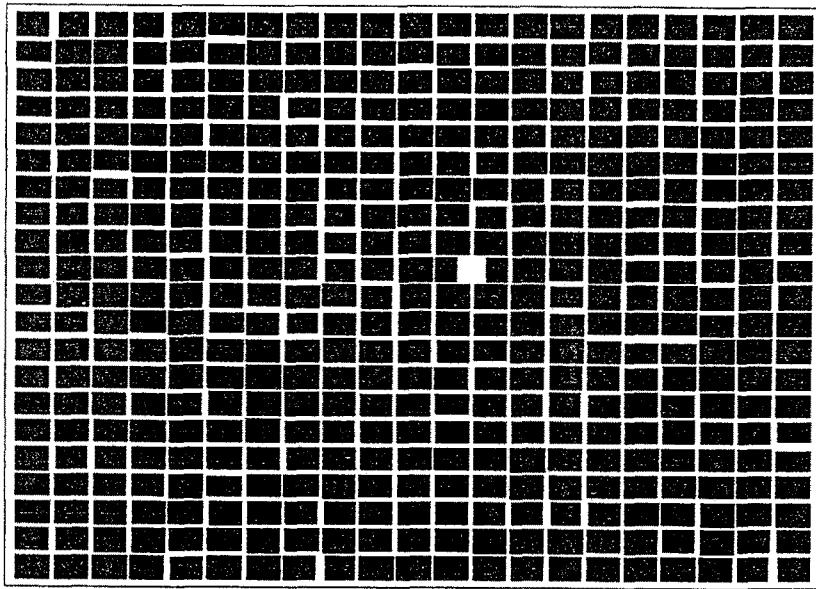


Fig. 5. Pictorialisation of the fitted random network.

Fig. 4 which show the 840 pore sizes individually as placed randomly in the network. Figure 5 then shows a pictorialisation of the network of Fig. 4. The corresponding number distribution and volume distribution histograms are presented in Figs. 6(a) and 6(b) respectively. The juxtaposition of the two figures is striking, since it is immediately evident that the majority of the pore volume is contained in just a few large pores. In fact of the total 840 pores, the five largest pores have radii of 1795, 564, 560, 556, and 542, which account for some 14% of the total network volume. In contrast, 92% by number of the pores have sizes less than 300 Å. It is not immediately obvious, but the accessibility of the few large pores is controlled by the preponderance of much smaller pores. It is inevitable that a large proportion of the larger pores will be hidden amongst smaller ones and this could be expected to lead to a pronounced hysteresis effect.

Predicting the Desorption Branch of the Isotherm

Once the network in Fig. 4 has been completely filled by condensate, the emptying process, on reduction of the water pressure, will initiate from the largest pore on the exterior. This is of size 391 Å located at row 8 and column 1. No further emptying occurs because

the neighbor pores are of sizes 147, 115 and 15 Å. This single emptying step takes place at a relative pressure of 0.75. The desorption process is followed step by step. A significant hysteresis loop is generated because the largest proportion of the larger pores are shielded amongst smaller pores. The full desorption (or emptying) branch is presented in Fig. 7 for the detailed calculations of the entire 840 pores.

As can be seen from Fig. 7, the non-emptying of large hidden pores initially causes the predicted desorption to lie above the experimental result for random placement of pores. However, at around a relative pressure of 0.55, corresponding to the emptying of pores of radius 189 Å, there occurs a very large emptying of a set of connected pores which causes the desorption branch to fall suddenly below the experimental result. In qualitative terms, this behavior is linked to the percolation threshold of those pores lying below the size of 189 Å. The result is that some 70% of the whole network dimensionless volume empties as the relative pressure falls from 0.55 to 0.44. Below this percolation type threshold, there is almost negligible shielding possibility of large pores behind small ones. As a result the desorption branch becomes closely coincident with the adsorption one, so that they are effectively indistinguishable.

If these simulations are now carried out for a network of double the size, i.e., a 40×40 network comprised

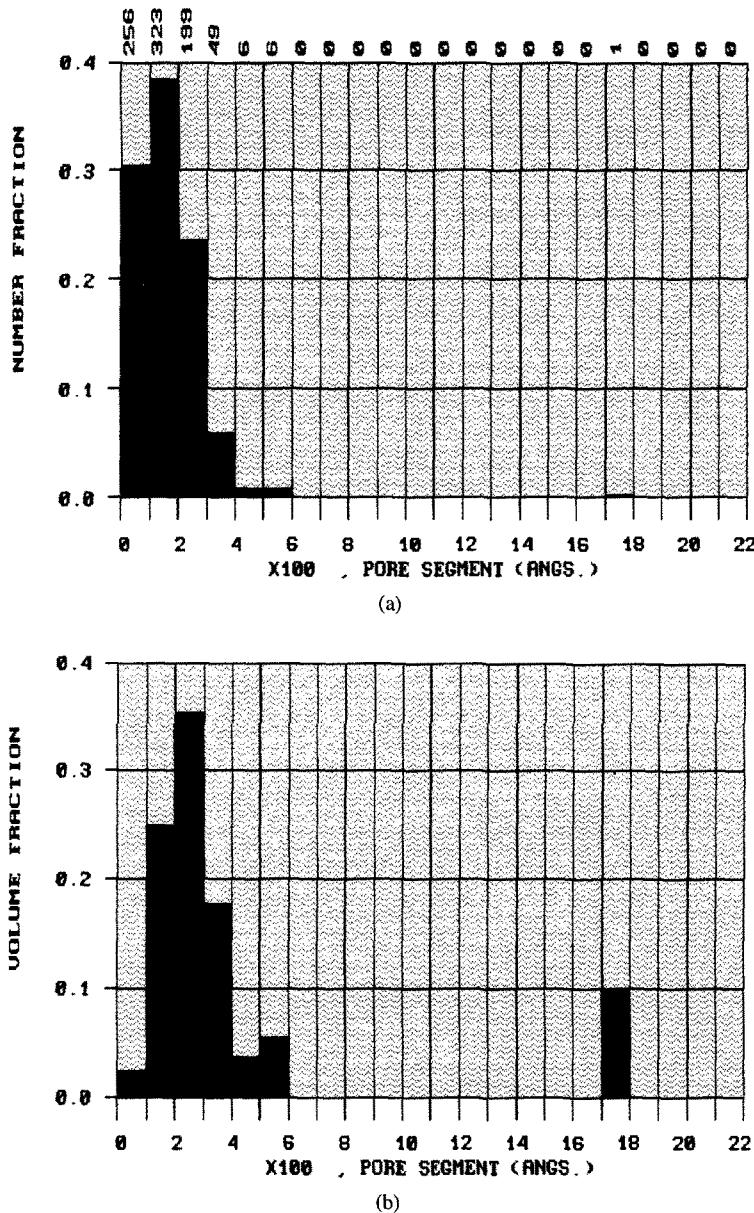


Fig. 6. (a) Number distribution of pore segments. (b) Volume distribution of pore segments.

of 3280 pores, there is little visually detectable change in the adsorption branch of the isotherm. However, because of the increased potential for shielding of large pores behind smaller ones, the desorption branch is always significantly displaced above that for the smaller 20×20 network. As a result, although the hysteresis loop is enlarged, the quality of fit to the experimental result is effectively made worse, especially in the relative pressure range from 0.55 down to 0.44.

Effect of Structure Re-ordering on the Desorption Branch

So far, the two networks examined have been entirely randomised, so that the size of a pore at any position is taken to be independent of the size of any neighboring pores. If some order is to be introduced into the assembly of pores in forming a network, it is first of all quite clear that, irrespective of the nature of re-structuring,

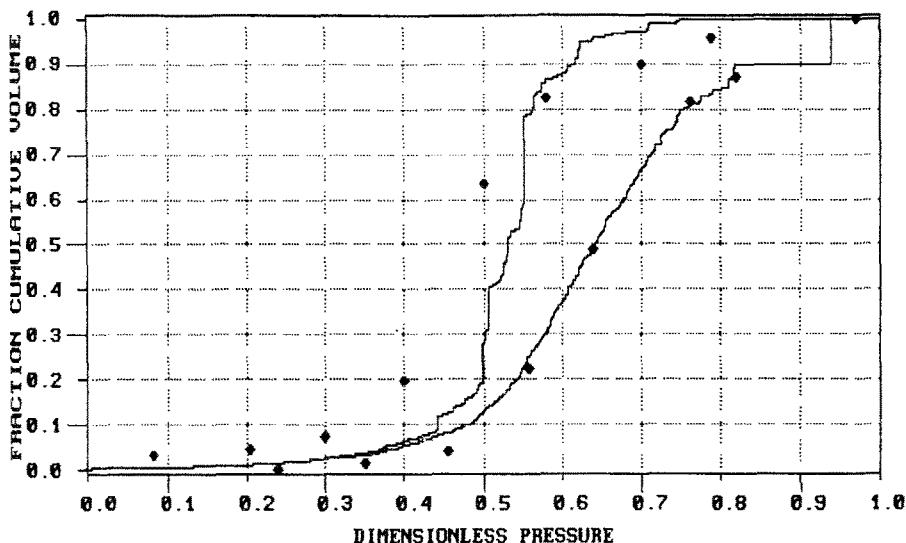


Fig. 7. Predicted desorption isotherm for random network (20 \times 20).

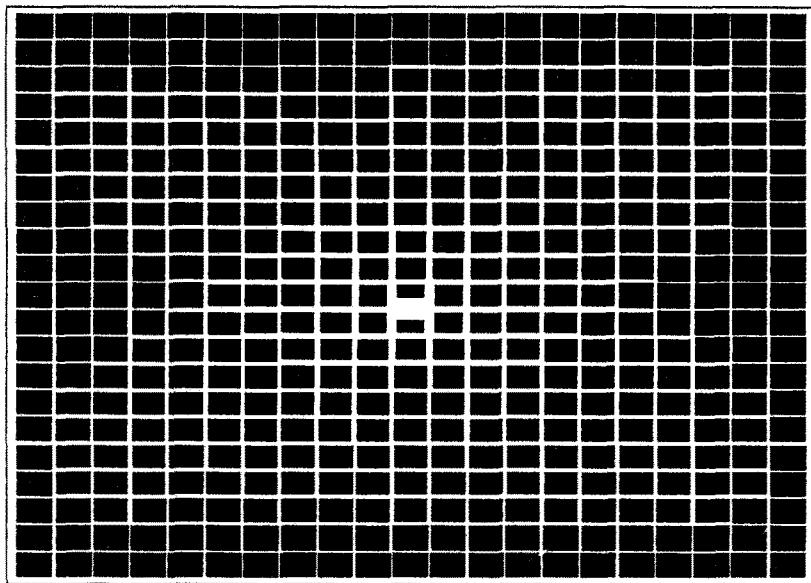


Fig. 8. Spirally wound networks of pores: largest pores on interior/smallest pores on exterior.

the adsorption (or filling) branch will be entirely unaffected. It is however evident that the effects of restructuring from a random basis will show up in the desorption isotherm.

This can be easily demonstrated with respect to an illustrative extreme of re-ordering whereby the full set of random pores are assembled in rank order and then spi-

rally 'wound' into position in the network. If the spiral rewinding places the largest pore at the centre and the smallest pore at the exterior, the pictorialised 20 \times 20 network of Fig. 4 appears as shown in Fig. 8. This network, which has pore sizes graded in size from the outside to the centre will not empty of sorbate until the value of p/p_{sat} corresponds to a very small pore of ra-

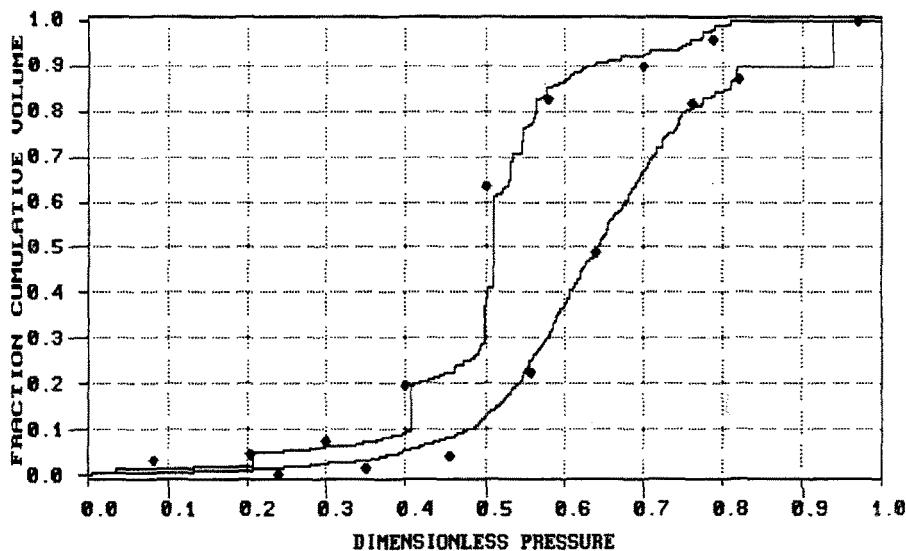
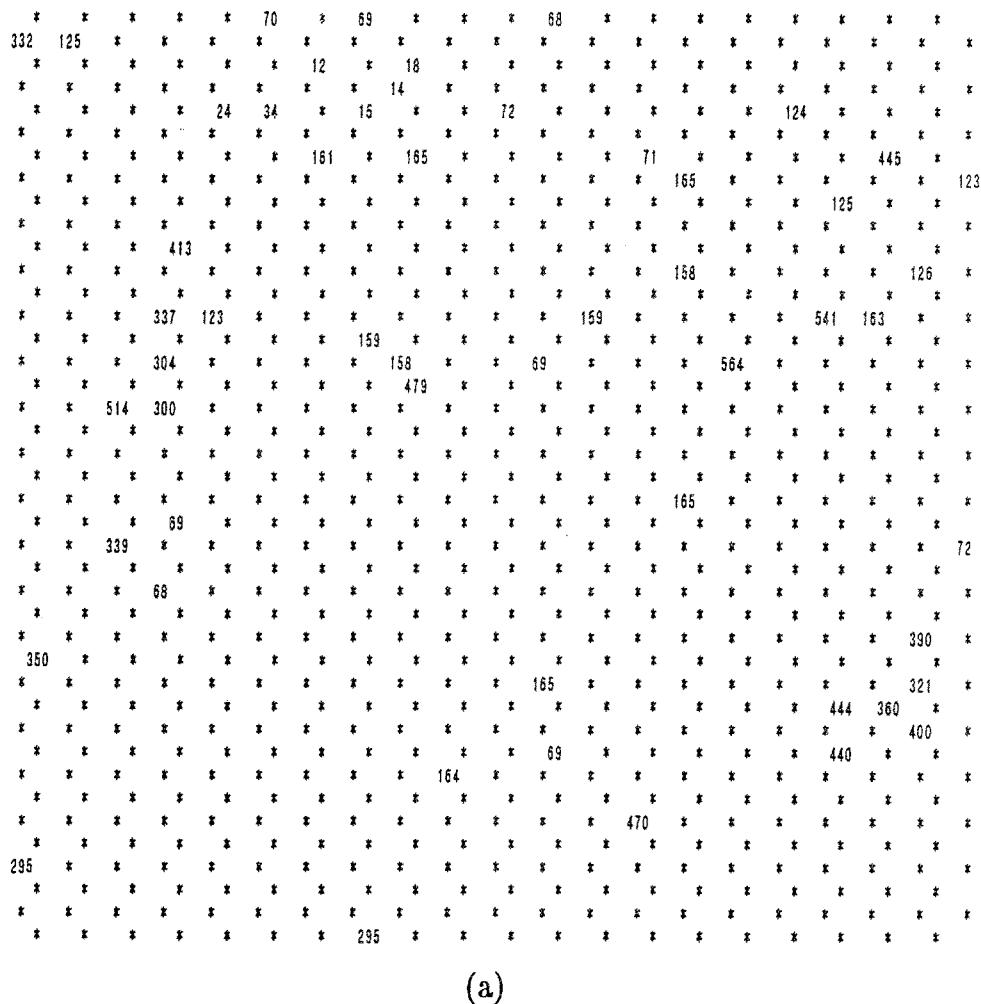


Fig. 9. Isotherms predicted using patchy heterogeneity.

radius 29 Å. This represents the largest possible hysteresis. In contrast, the counterpart spirally wound network with the smallest pore at the centre and the largest on the exterior gives zero hysteresis, so that the desorption branch is then exactly coincident everywhere with the adsorption.

It is therefore clear that a huge variation of possibilities for the desorption branch exists according to extents of restructuring which lie between complete randomness and the extreme of spiralling size ranked assembly.


Figure 9 then shows an example of a close match of the experimental desorption branch which has been achieved by a small extent of structural reordering. This reordering has three conceptual components. These can be briefly summarised as (i) a preferred location of some of the largest pores on the exterior surface, (ii) a sub-surface layer comprised of a lower proportion of mid-size range pores and (iii) a small proportion of shielded voids in which some of the largest pores are isolated amongst some of the smallest ones. The structural reordering, which we term a patchy heterogeneity, leaves 95% of the pore network completely random, and requires the adjustment of only some 54 pores out of the total of 840 for a 20 × 20 network.

The full details of the structural re-ordering are presented in Fig. 10 in two parts. Figure 10(a) shows the original locations of the 54 manipulated pores. The remainder of the pores in the network which are not

affected are shown as asterisks. The size of these unaffected pores can be read from Fig. 4. Figure 10(b) then indicates the nature of the changes made and shows the adjusted pores in their new positions. The three stages of adjustments are then as follows.

Firstly, in order to provide for an increased extent of desorption over the relative pressure range from 1.0 down to 0.7, the small number of pores sized from 541 Å down to 400 Å have been relocated on the network exterior. These 8 pores are indicated by enclosure in a single box in Fig. 10(b). The largest of these pores gives an initial desorption at a relative pressure of 0.81 with the remaining pores emptying down to a relative pressure of 0.75. This improves the initial fit of the isotherm (see Fig. 7 for comparison with the fully random network) which is indicative of an increased probability for larger pores to be located at the network exterior.

Secondly, the subsequent accelerated rate of emptying observed for the random network is avoided by replacing some of the exterior pores of size 390 Å down to 295 Å to more interior positions. These are shown underscored in Fig. 10(b) and amount to just 11 pores. These pores have been switched with 11 pores in the range 165 Å down to 158 Å which have been replaced into the vacated 11 pore exterior positions. These pores which have been moved outward are shown as overscored in Fig. 10(b). This second phase of adjustment amounts to a tendency for the immediately inner layers

(a)

Fig. 10. Details of local re-ordering with patchy heterogeneity. (a) Pores subjected to repositioning; (b) pores as repositioned.

of pores to be smaller on average than for the whole network. As a result of this adjustment, a steadily progressive desorption is maintained from a relative pressure of 0.75 down to 0.5.

The third and final phase of heterogeneity involves the requirement to avoid a sudden onset of emptying related to a percolation threshold in the relative pressure range from around 0.5, so that there is still a significant water retention at a relative pressure as low as 0.4. This can be achieved by restricting the emptying of the five largest pores by surrounding them by smaller ones. Just three such "shielded voids" are necessary to achieve this and these are shown in large "boxed" conglomerates of pores in Fig. 10(b). The first to empty would be the largest 1795 Å pore surrounded

by pores sized from 126 Å to 123 Å. The second conglomerate of 3 large pores forming a single void empties between 72 Å and 68 Å. The final shielded void with a pore size of 524 Å is shielded by very small pores of size 34 Å to 12 Å which empties at a relative pressure of 0.036. As a result of the creation of these three shielded voids, the final portion of the desorption emptying now closely follows the experimental result.

Finally, for the deduced structure at a 20 × 20 size, Fig. 11 shows the desorption sequence when 1/4, 1/2 and 3/4 of the adsorbed water has been removed by desorption (number basis). It can be seen that the largest pore size 1795 Å is still filled with water at 1/2 removal, but empty when 3/4 of the desorption has taken place.

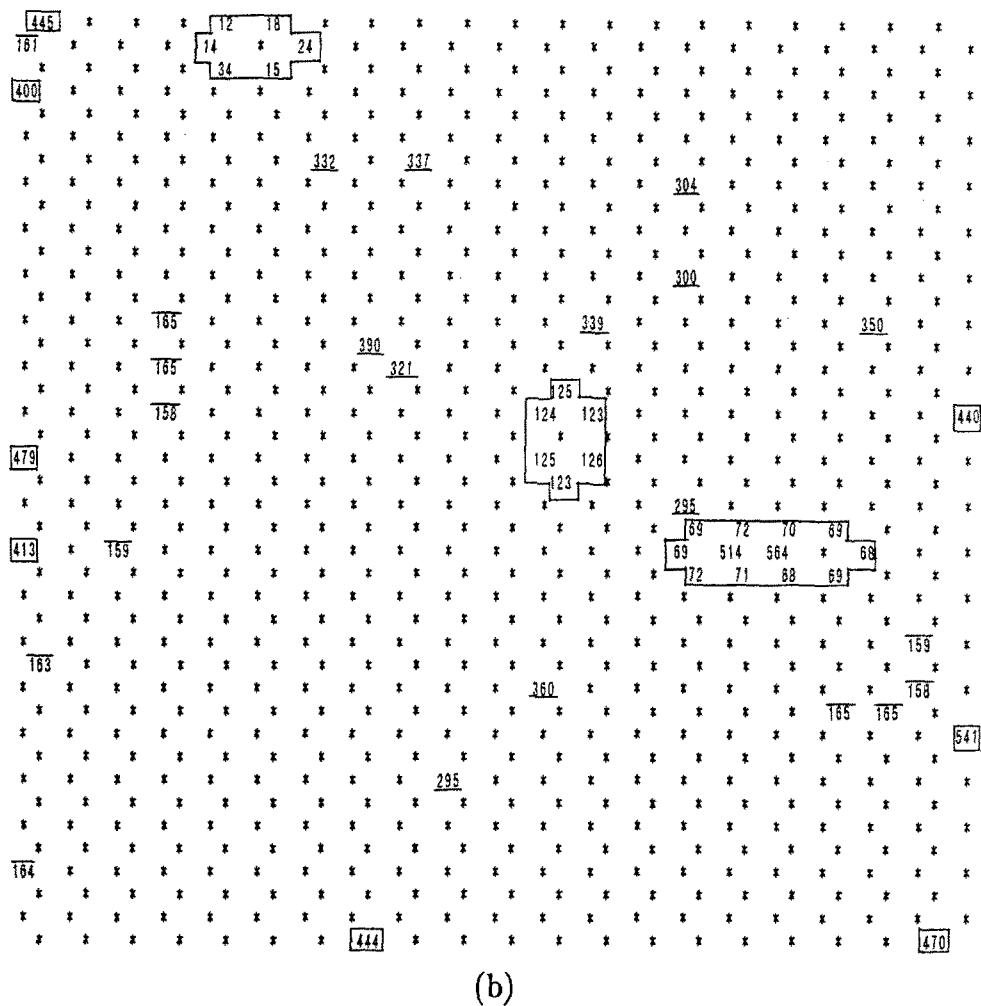


Fig. 10. (Continued.)

Discussion

Although the particular quantitative details of this restructuring should not be taken to possess precise significance, the concept of partial restructuring comprising a patchy heterogeneity, as distinct from exact randomness, may well be the appropriate qualitative concept to explain the desorption isotherm which has been experimentally measured. It is then possible that this concept of patchy heterogeneity is related to the processing procedures which have resulted in the formation of the activated carbon particles. In any event, it is clear that partially ordered/partially random structures have the capability to explain and describe the water isotherm hysteresis encountered in this case.

Finally, it is important to recognise that the validity of these detailed results of structural re-ordering from perfect randomness are model dependent. Both topology and connectivity as well as individual pore shape geometry will vary the shape and intensity of any hysteretic loop. Therefore the deduced psd for the regular 2-D 6-connectivity square network used here is obviously not wholly unique. Furthermore, it is likely that such a deduced psd will also be influenced by improved understanding of the thermodynamics of the pore surface/adsorbate interactions, so that further work in this area will assist the development of more valid psd characterisation.

Ultimately, of course, this approach needs to be deployed and tested with 3-D pore network models.

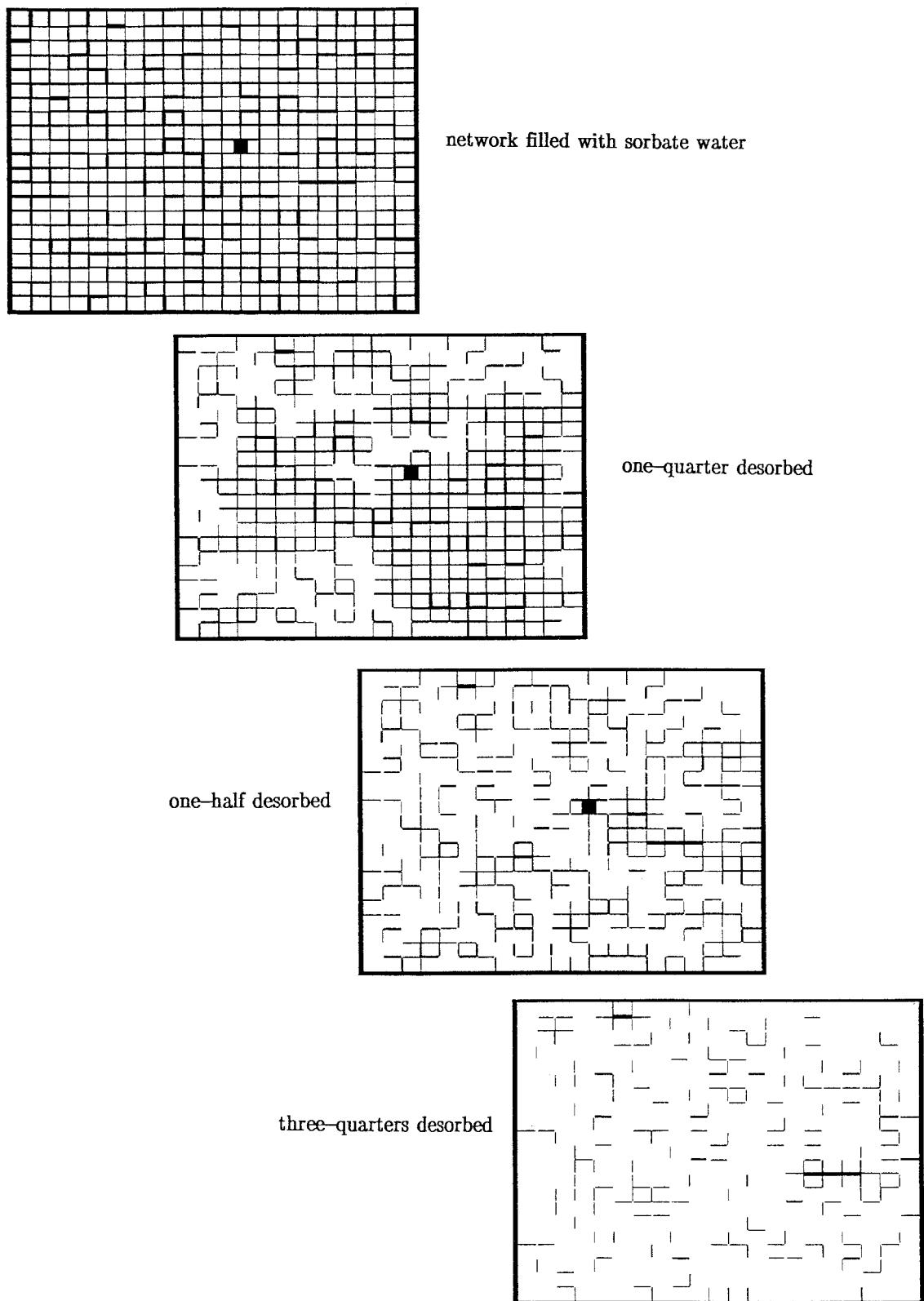


Fig. 11. Pictorialised desorption sequence for fitted network.

Conclusions

1. The concept of a simple 2-D stochastic pore network of cylindrical pore segments can be readily applied to deduce the intrinsic pore segment distribution for a specific sample of a BPL activated charcoal. The deduction of the pores size distribution (psd) is simpler than for mercury porosimetry since in adsorption by capillary condensation, there are no accessibility limitations.
2. The extent of hysteresis between adsorption and desorption has been shown to be attributable to the way pore segments are assembled together.
3. The most extreme hysteresis between the adsorption and desorption branches occurs when the pore sizes are spirally allocated into a network with the largest pores on the interior sequenced to the smallest pores on the exterior of the network. There is a negligible hysteresis for the reversed spiral assembly which has the largest pores on the outside of the network and the smallest ones at the centre.
4. For the BPL sample studied, random assembly of pores produced only a poor approximation of the experimental hysteresis loop.
5. An exact replication could be achieved by using a simple patchy heterogeneity which required manipulation of only 5% of the pores forming the random network. This partial restructuring involved larger pores preferentially on the exterior, an inner layer with a smaller proportion of mid-size pores and a small number of shielded large voids.

Nomenclature

p	vapor phase partial pressure of sorbate
p_{sat}	saturation vapor pressure of sorbate
R	gas constant
r	pore radius
T	absolute temperature
t	adsorbed layer thickness
V_L	molar volume of adsorbed phase
σ	surface tension
θ	contact angle

References

Androutsopoulos, G.P. and R. Mann, "Evaluation of Mercury Porosimeter Experiments Using a Network Pore Structure Model," *Chem. Eng. Sci.*, **34**, 1203–1212 (1979).

Arbabi, S. and M. Sahimi, "Computer Simulations of Catalyst Deactivation—II. The Effect of Morphological, Transport and Kinetic Parameters on the Performance of the Catalyst," *Chem. Eng. Sci.*, **46**, 1749–1755 (1991).

Everett, D.H., "Adsorption Hysteresis," in *The Solid Gas Interface* (E. Alison Flood, Ed.), 1055, Marcel Dekker, New York, 1967.

Fatt, I., "The Network Model of Porous Media I: Capillary Pressure Characteristics," *Petrol. Trans. A.I.M.E.*, **207**, 144 (1956).

Liu, H. and N.A. Seaton, "Determination of the Connectivity of Porous Solids from Nitrogen Sorption Measurements—III Solids Containing Large Mesopores" *Chem. Eng. Sci.*, **49**, 1869–1878 (1994).

Machin, W. and J.T. Stuckless, "Capillary-Condensed Water in Silica Gel," *J. Chem. Soc. Faraday Trans.*, **81**, 597 (1985).

Mahle, J.J. and D.K. Friday, "Water Adsorption Equilibria on Microporous Carbons Correlated Using a Modification to the Sircar Isotherm," *Carbon*, **27**, 835–843 (1989).

Mann, R., G.P. Androutsopoulos, and H. Golshan, "Application of a Stochastic Network Pore Model to Oil Bearing Rock with Observations Relevant to Oil Recovery," *Chem. Eng. Sci.*, **36**, 337–346 (1981).

Mann, R. and H. Golshan, "Application of a Stochastic Network Pore Model to a Catalyst Pellet," *Chem. Eng. Comm.*, **12**, 377–391 (1981).

Mann, R., P.N. Sharratt, and G. Thomson, "Deactivation of a Supported Zeolitic Catalyst: Diffusion, Reaction and Coke Deposition in Stochastic Pore Networks," *Chem. Eng. Sci.*, **41**, 711–718 (1986).

Mann, R. and G. Thomson, "Interpretation of Low Temperature Gas Adsorption and Desorption Using Stochastic Pore Networks," in *Adsorption: Science & Technology*, A.I.E. Rodrigues et al. (Eds.), pp. 63–77, Kluwer Academic Publishers, 1989.

Mann, R. and M.C. Wasilewski, "Towards a Fractal Computer Graphic Basis for Characterisation of Catalyst Pore Structure by Image Reconstruction," *Trans. I. Chem. E.*, **68** Part A, 177–184 (1990).

Mason, G., "The Effect of Pore Space Connectivity on the Hysteresis of Capillary Condensation in Adsorption-Desorption Isotherms," *J. Coll. Int. Sci.*, **88**(1), 36 (1982).

Nicholson, D. and J.H. Petropoulos, "Capillary Models for Porous Media II: Sorption-desorption Hysteresis in 3-D Networks," *Brit. J. Appl. Phys. (J. Phys. D)*, **1**, 1379 (1968).

Patwardhan, A.V. and R. Mann, "Effective Diffusivity and Tortuosity in Wicke-Kallenbach Experiments: Direct Interpretation Using Stochastic Pore Networks," *Trans. I. Chem. E.*, **69**, Part A, 205–207 (1991).

Petropoulos, J.H., J.K. Petrou, and N.K. Kanellopoulos, "Explicit Relation Between Relative Permeability and Structural Parameters in Stochastic Pore Networks," *Chem. Eng. Sci.*, **44**, 2967–2978 (1989).

Rajniak, P. and R.T. Yang, "A Simple Model and Experiments for Adsorption-Desorption Hysteresis: Water Vapour on Silica Gel," *A.I.Ch.E. Jl.*, **39**, 774–781 (1993).

Russell, B.P. and M.D. LeVan, "Pore Size Distribution of BPL Activated Carbon Determined By Different Methods," *Carbon*, **32**(5), 845 (1994).

Seaton, N.A., "Determination of The Connectivity of Porous Solids From Nitrogen Sorption Measurements," *Chem. Eng. Sci.*, **46**(8), 1895 (1991).

Sharratt, P.N. and R. Mann, "Some Observations on the Variation of Tortuosity with Thiele Modulus and Pore Size Distribution," *Chem. Eng. Sci.*, **42**, 1565–1576 (1987).